

ARSET

Applied Remote Sensing Training

http://arset.gsfc.nasa.gov

@NASAARSET

Overview and Access to GPCP, TRMM, and GPM Precipitation Data Products

Outline

- Remote Sensing of Precipitation
- Global Precipitation Climatology Project (GPCP)
- Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurements (GPM) Missions
- TRMM and GPM Data Products
- TRMM/GPM Data Access: Demonstration of Precipitation Processing System/ STORM

Passive Remote Sensing: Inferred indirectly from emitted infrared radiation by clouds

Passive Remote Sensing: Inferred indirectly from emitted infrared radiation by clouds

Passive Remote Sensing: Estimated from microwave radiation emitted or scattered by precipitation particles

- The lower frequencies, referred to as "emissions channels" measure precipitation mainly from energy emitted by raindrops (37 GHz)
- The higher frequencies, or "scattering channels" gather energy scattered by ice particles above the freezing level (85 GHz)

http://comet.ucar.edu

Active Remote Sensing: Estimated from back-scattered microwave radiation transmitted by radards

- NASA Satellites TRMM and GPM use K-band radar
- K-band generally has a frequency range within 27-40 GHz and 12-18 GHz

http://pmm.nasa.gov

Global Precipitation Climatology Project (GPCP)

http://precip.gsfc.nasa.gov/gpcp v2.2 comb new.html

- Established by the World Climate Research Program (WCRP)
- Attached to the Global Energy and Water Exchange (GWEX) program
- Quantifies global rainfall from satellite measurements
- The longest satellite-based precipitation data record covering 30+ years from 1979-present

GPCP

http://precip.gsfc.nasa.gov/gpcp v2.2 comb new.html

GPCP combines precipitation information from several satellites and gauges to derive a merged data set using:

- The passive microwave estimates are based on the series of Defense Meteorological Satellite Program (DMSP)
 - Special Sensor Microwave/Imager (SSMI)
 - Special Sensor Microwave Imager/Sounder (SSMIS) data
- The infrared (IR) precipitation estimates are based on
 - Geostationary satellites from U.S., Europe, and Japan
 - NOAA-series polar orbiting satellites:
 - Television Infrared Observation Satellite Program (TIROS), Operational Vertical Sounder (TOVS), NASA Aqua Satellite Atmospheric Infrared Sounder (AIRS)
 - Rain gauge data from the Global Precipitation Climatology Center (GPCC)

GPCP Sources and Techniques

	Variable				
	Precip	Random			
	Rate [p]	Error [e]	Source	Num	ber of Samples
Technique	(mm/d)	(mm/d)	[s]	[n]	(Units)
SSMI(SSMIS) Emission [se]	*			*	55 km images
SSMI(SSMIS) Scattering [ss]	*			*	overpass days
SSMI(SSMIS) Composite [sc]	*		*	*	55 km images
TOVS(AIRS) [tv]	*				
Merged SSMI(SSMIS)/TOVS(AIRS)	*	*	*		
[st]					
OPI [op]	*	*			
GPI [gp]	*			*	2.5° images
AGPI [ag]	*	*			
Multi-Satellite [ms]	*	*			
GPCC Gauge [ga]	*	*		*	gauges
Satellite-Gauge [sg] Final Product	*	*			

GPCP Sources and Techniques

Technique	
SSMI(SSMIS) Emission [se]	
SSMI(SSMIS) Scattering [ss]	
SSMI(SSMIS) Composite [sc]	
TOVS(AIRS) [tv]	
Merged SSMI(SSMIS)/TOVS(AIRS)	
[st]	
OPI [op]	
GPI [gp]	
AGPI [ag]	
Multi-Satellite [ms]	
GPCC Gauge [ga]	
Satellite-Gauge [sg]	

- GPCP is based on a different mix of observations in space and time
- No microwave observations are available before 1986
- TOVS/AIRS from polar orbiting satellites provide infrared observations
- Geostationary infrared based GPI available only in 40°S – 40°N

GPCP Data Information

More information on GPCP data sources can be obtained from

- http://precip.gsfc.nasa.gov
- https://pmm.nasa.gov/education/ videos/nasa-scientists-researchglobal-precipitation

Average monthly rainfall for February from 1979-2006. svs.gsfc.nasa.gov

GPCP Data Information

More information on GPCP data sources can be obtained from

- http://precip.gsfc.nasa.gov
- https://pmm.nasa.gov/education/videos/nasa-scientists-research-globalprecipitation

GPCP Data Products

Product Name and Version	Spatial Resolution and Coverage	Temporal Resolution and Coverage	Data Format
GPCP Version 2.2	2.5° x 2.5° Global	5-day Mean Monthly (1979-2015) Climatology based on (1979-2011)	Binary with ASCII Header
GPCP Version 1.2	1° x 1° Global	Daily (10/1996-10/2015)	

Detailed Documentation

ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.2/doc/V2.2_doc.pdf

ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2/1DD v1.2 doc.pdf

GPCP Data Access

Product Name and Version	Data Access File Name Convention
GPCP Version 2.2 Monthly	ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.2/psg/ • gpcp_v2.2_psg.YYYY.gz • gpcp_v2.2_esg.YYYY.gz (Error)
GPCP Version 2.2 Pentad	ftp://ftp.cpc.ncep.noaa.gov/precip/ GPCP_PEN/ • gpcp_pen_v2.2_sgi_YYYY.gz
GPCP Version 1.2	ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2 • gpcp_1dd_v1.2_p1d_YYYY.gz

psg: Precipitation Satellite - Gauge; pid: Precipitation 1 degree

Tropical Rainfall Measurement Mission (TRMM)

http://trmm.gsfc.nasa.gov

- The first satellite dedicated to measuring tropical and subtropical rainfall
- Launched 27 November 1997 and ended 15 April 2015
- First satellite to carry a microwave precipitation radar
- Predecessor to Global Precipitation Measurement (GPM) Mission

A joint mission between NASA and JAXA (Japanese Space Agency)

TRMM Satellite & Sensors

http://trmm.gsfc.nasa.gov

- In a non-polar, low-inclination orbit
- Altitude of approximately 350km, raised to 403km after Aug 23, 2001
- Spatial Coverage
 - 16 TRMM orbits a day covering global tropics between 35°S – 35°N latitude
- Sensors:
 - TMI (TRMM Microwave Imager)
 - PR (Precipitation Radar)
 - VIRS (Visible and InfraredScanner)
 - LIS (Lightening Imaging Sensor)
 - CERES (Clouds and the Earth's Radiant Energy System

TRMM Orbits

TRMM Microwave Imager (TMI)

http://pmm.nasa.gov/TRMM/TMI

- Spatial Coverage and Resolution:
 - Coverage: -180°-180°, 35°S-35°N
 - Swath: 760km (878km after 8/2001)
 - Vertical Resolution:
 - 0.5 km from surface 4 km
 - 1.0 km from 4-6 km
 - 2 0 km from 6-10 km
 - 4.0 km from 10-18 km
- Temporal Coverage and Resolution:
 - Nov 27, 1988 Apr 15, 2014
 - 16 orbits per day

Channel Frequencies

• 10.7, 19.4, 21.3, 37, 85.5 GHz

Precipitation Radar (PR)

http://pmm.nasa.gov/TRMM/PR

- Spatial Coverage and Resolution:
 - Coverage: 35°S-35°N
 - Swath: 215km (247 after 8/2001)
 - Spatial Resolution: 4.3km (5km)
 - Vertical Resolution: 250m (from 0-20km)
- Temporal Coverage and Resolution:
 - Nov 27, 1998 Oct 7, 2014
 - ~16 orbits per day
- Frequency:
 - 13.6 GHz

Kummerow, C., et. al, 1998: The tropical rainfall measuring mission (TRMM) sensor package, J. Atmos. Oceanic Technol., 15, 809-817.

GPM Satellite & Sensors

http://pmm.nasa.gov/GPM

- GPM core satellite is in a non-polar, low inclination orbit
 - Altitude: 407km
- Spatial Coverage:
 - 16 T orbits a day covering global tropics, between 65°S-65°N
- Along with constellation of satellites, GPM has revisit time of 1-2 hrs over land
- Sensors:
 - GMI (GPM Microwave Imager)
 - DPR (Dual Frequency Precipitation Radar)

GPM Microwave Imager (GMI)

http://pmm.nasa.gov/GPM/flight-project/GMI

- Spatial Coverage and Resolution:
 - Coverage: -180°-180°, 65°S-65°N
 - Swath: 885km
 - Spatial Resolution: 4.4-32km
 - Vertical Resolution:
 - 0.5 km from surface 4 km
 - 1.0 km from 4-6 km
 - 2.0 km from 6-10 km
 - 4.0 km from 10-18 km
- Temporal Coverage and Resolution:
 - Feb 2014 present
 - ~2-4 hr observations

Channel Frequencies:

• 10.6, 18.7, 23.8, 36.5, 89, 166, 183 GHz

Dual Precipitation Radar (DPR)

http://pmm.nasa.gov/GPM/flight-project/DPR

- Spatial Coverage and Resolution:
 - Coverage: -180°-180°, 65°S-65°N
 - Swath: 120km (Ka) and 245km (Ku)
 - Spatial Resolution: 5.2km
 - Vertical Resolution: 250m (from 0-20km)
- Temporal Coverage and Resolution:
 - Feb 27, 2014 present
 - ~2-4 hr observations
- Frequency:
 - 13.6 and 35.5 GHz

TRMM and GPM Comparison

- TRMM measurements are limited to the tropics
- GPM measurements span middle & high latitudes

- GMI & DPR
 - provide improved reference standards for inter-calibration of constellation precipitation measurements
 - Better accuracy measurements
- GMI has a higher spatial resolution than TMI
- Improved light rain and snow detection in GMP
- DPR has better identification of liquid, ice, mixed-phase precipitation particles

Importance of TRMM Data Products

TRMM has ended, but it's important to learn about TRMM data because:

- TRMM provides high resolution precipitation data for 17 years
 - Useful for detecting and understanding climate variability and change
- Many applications are developed from TRMM data and still have to transition to using GPM data
 - extreme rain, flood, and drought monitoring and mapping
 - Agriculture
 - Health
- GPM algorithms are conceptually similar
 - TRMM and GPM data will be inter-calibrated to provide a combined longterm precipitation record

Precipitation Algorithms for TRMM and GPM

http://pmm.nasa.gov/science/precipitation-algorithms

- There are 4 major algorithms used to obtain precipitation estimates from GPM/TRMM observations
 - Radar Algorithms
 - Radiometer Algorithms
 - Combined Radar + Radiometer Algorithms
 - Multi-Satellite Algorithms
 - TRMM and GPM Core are used as a calibrator for multiple national and international constellation satellites

Summary of TRMM Level-2 Precipitation Products

Sensor/Product Name	Spatial Resolution & Coverage	Temporal Resolution	Data Format
PR only: 2A25	 5km x 5km Single orbit 16 orbits/day (35°S-35°N) 	 7-day latency for Near Real-Time 3-hour, 2-day, 5- day 	
TMI only: 2A12	5km x 5kmOrbital16 orbits/day (38°S-38°N)	• 3-hour, 2-day, 15- day	HDF4
Combined TMI & PR: 2B31	5km x 5kmOrbital16 orbits/day (38°S-38°N)	 7-day latency for Near Real-Time 3-hour, 2-day, 5- day 	

Summary of TRMM Level-3 Precipitation Products

Sensor/Product Name	Spatial Resolution & Coverage	Temporal Resolution	Data Format
TMPA: 3B42RT & Final 3B42	• 0.25° x 0.25° • 50°S x 50°N	RT is NRT with 8 hr latency3-hourly	RT data in binary and OpenDAP
TMPA: 3B43	• 50 5 X 50 N	Monthly2 month latency	HDF4NetCDF
PR only: 3A12	0.5° x 0.5° and 5° x 5°37°S x 37°N	Monthly	
TMI only: 3A12	0.5° x 0.5°38°S x 38°N	Monthly	HDF4OpenDAP
TMI-PR Combined: 3B31	5° x 5°40°S x 40°N	Monthly	

Summary of GPM Level-2 Precipitation Products

Sensor/Product Name	Spatial Resolution & Coverage	Temporal Resolution	Data Format
DPR Ku-only: 2A-Ku	• 5.2km x 125m		
DPR Ka-only: 2A-Ka	Single orbit	20-120 minutes24 hrs	
DPR Ku & Ka: 2A-DPR	• 16 orbits/day (70°S-70°N)		
GMI/2A-GPROF	4km x 4kmOrbital16 orbits/day (70°S-70°N)	• 2-40 hrs	HDF5OpenDAP
Combined GMI+DPR: 2A-CMB	 5km x 5km Orbital (70°S-70°N) Coincident Ku-Ka GMI footprints 	• 3-40 hrs	

Summary of GPM Level-3 Precipitation Products

Sensor/Product Name	Spatial Resolution & Coverage	Temporal Resolution	Data Format
IMERG	• 0.1° x 0.1° • 90°S-90°N	30 min (NRT)6 hr, 16 hr, & 3 month latency	• HDF4
Combined GMI + DPR Rainfall Averages: 3-CMB	0.1° x 0.1°70°S-70°N	Monthly	 NetCDF OpenDAP ASCII .gif, .png KML (Google Earth)
DPR Rainfall Averages: 3- DPR	 0.25° x 0.25° 5.0° x 5.0° Daily: 67°S-67°N Monthly: 70°S-70°N 	Daily & Monthly	
GMI Rainfall Averages: 3- GPROF	0.25° x 0.25°90°S-90°N	Daily & Monthly	,

Multi-Satellite Algorithms for TRMM and GPM

http://pmm.nasa.gov/science/precipitation-algorithms

- TRMM & GPM Core satellites are used to calibrate microwave observations from a constellation of national and international satellites
- Allow improved spatial and temporal coverage of precipitation data
- TRMM Multi-satellite Precipitation Analysis (TMPA)
 - Widely used for applications
- TMPA will be extended to match Integrated Multi-satellitE Retrievals for GPM (IMERG)

TMPA

http://precip.gsfc.nasa.gov/trmm_comb.html

- TMPA combines PR & TMI rain rates
- Inter-calibrates passive rain rates from other satellite sensors
 - TMI, SSM/I, AMSR, AMSU-B, MHS, IR radiometers*
- Inter-calibrates with national and international geostationary and NOAA lowearth orbiting satellites infrared measurements by using VIRS
- Final rain product is calibrated with rain gauge analyses on a monthly time scale

• AMSR: Advanced Microwave Scanning Radiometer – onboard NASA Aqua Satellite

AMSU: Advanced Microwave Sounding Unit – onboard NOAA operational satellite

IMERG

https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf

- Conceptually similar to TMPA
- GPM constellation satellites include:
 - GCOM-W
 - DMSP
 - Megha-Tropiques
 - MetOp-B
 - NOAA-N'
 - NPP
 - NPOESS
- Final rain product is calibrated with rain gauge analyses on monthly time scale

pmm.nasa.gov

IMERG

https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf

Multiple runs accommodate different user requirements for latency and accuracy

- "Early" now 5 hours (flash flooding) will be 4 hours
- "Late" now 15 hours (crop forecasting) will be 12 hours
- "Final" 3 months (research data)

Native time intervals are half-hourly and monthly (final only)

- Value-added products at 3 hrs, 1, 3, and 7 days .tiff will be available
- Initial release covers 60°N-60°S will be 90°N-90°S

TMPA and IMERG

	TMPA	IMERG
Spatial Resolution	0.25° x 0.25°	0.1°x0.1°
Spatial Coverage	Global, 50°S-50°N	Global, 60°S-60°N (will be extended from pole-pole)
Temporal Resolution	3 hours	30 minutes
Temporal Coverage	12/1997 – Present*	2/27/2014-Present+

⁺ TMPA and IMERG combined data will be available in late 2017 at IMERG data resolution

^{*} After 15 April 2015 TRMM climatological calibration is being used to generate TMPA

TRMM and GPM Data Type Convention

 $\underline{http://pps.gsfc.nasa.gov/Documents/FileNamingConventionForPrecipitationProductsForGPMMissionV1.4.pdf}$

Type	Description
1A	Instrument count, geolocated, at instantaneous field of view (IFOV).
1B	Geolocated, calibrated T _b or radar power at IFOV.
1C	Intercalibrated brightness temperatures T _c at IFOV.
2A	Geolocated geophysical parameters at IFOV from a single instrument.
2B	Geolocated geophysical parameters at IFOV from multiple instruments.
3A	Space/time averaged geophysical parameters from a single instrument.
3B	Space/time averaged geophysical parameters from multiple instruments.
4	Combined satellite, ground and/or model data.

TRMM File Name Convention

http://pps.gsfc.nasa.gov/Documents/FileNamingConventionForPrecipitationProductsForGPMMissionV1.4.pdf

Level 2 File Name

Level 3 File Name

GPM File Name Convention

http://pps.gsfc.nasa.gov/Documents/FileNamingConventionForPrecipitationProductsForGPMMissionV1.4.pdf

Level 2 File Name

2A.GPM.GMI.GPROF2008.20131101-S235152-E012400.000352.V03C.HDF5

3B-HHR.MS.MRG.3IMERG.20140805-S043000-E045959.0270.V03D.HDF5

Level 3 File Name

Trade-Offs Between Level 2 and Level 3 Precipitation Data Products

- IMERG and TMPA have lower spatial resolutions than Level 2 data
 - E.g. 2A12, 2A25, 2B31, 2A-GPROF, 2A-2DPR, 2BCMB
- IMERG and TMPA have better spatial coverage with no orbit gaps compared to Level 2 and Level 3 radar, imager, and radar/imager combined data
- IMERG and TMPA:
 - are uniformly gridded
 - have uniform with temporal resolution to cover diurnal variations
 - are available in multiple formats

Precipitation Measurement Missions

https://pmm.nasa.gov/

- Home of all information related to TRMM and GPM
- Links to data documentation and access

Precipitation Measurement Missions: Data Access

https://pmm.nasa.gov/data-access

- All about TRMM and GPM data
 - Including updates, news, and FAQ
- Quick data access links and user registration

Precipitation Measurement Missions: Data Sources

https://pmm.nasa.gov/data-access/data-sources

Precipitation Processing System: STORM

https://storm.pps.eosdis.nasa.gov/storm/

- All TRMM and GPM data products can be downloaded from STORM
- Data images and HDF5 data viewer are available in STORM

STORM Demonstration!

References for GPCP, TMPA and IMERG

- Adler, R.F., G.J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, E. Nelkin 2003: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeor., 4,1147-1167.
- Huffman, G.J, R.F. Adler, D.T. Bolvin, G. Gu 2009: Improving the Global Precipitation Record: GPCP Version 2.1. Geophys. Res. Lett., 36,L17808, doi:10.1029/2009GL040000.
- Huffman, G.J., R.F. Adler, D.T. Bolvin, G. Gu, E.J. Nelkin, K.P. Bowman, E.F. Stocker, D.B. Wolff, 2007: The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, Multi-Year, Combined-Sensor PrecipitationEstimates at Fine Scale. J. Hydrometeor., 8, 33-55.